Pubblications

Ferrara, S.Nardotto, S.Ponte, SG. Dellepiane. (2014) Infrastructure for data management and user centered rehabilitation in Rehab@Home project. PETRA’14, May 27-30, 2014, Island of Rhodes, Greece. ISBN: 978-1-4503-2746-6 doi>10.1145/2674396.2674419

Ponte, E. Ferrara, SG. Dellepiane. Home-based system for rehabilitation: improving quality of life through engineering solutions, Engineering 4 Society, Raising awareness for the societal and environmental role of engineering and (re)training engineers for participatory design. IEEE Conference June 18 and 19, 2015 Leuven, Belgium. Pp.126-130

Ponte, S.Gabrielli, J. Jonsdottir, M. Morando, SG. Dellepiane. Monitoring Game-Based Motor Rehabilitation of Patients at Home for Better Plans of Care and Quality of Life, Conference Of the IEEE Engineering in Medicine and Biology Society (EMBC), August 25-29, 2015 Milano, Italy. 978-1-4244-9270-1/15/$31.00 ©2015 IEEE pp. 3941-3944.

Khalilinezhad. M, Dellepiane. S Vernazza. G, Detecting HCC Tumor in Three Phasic CT liver Images with Optimization of Neural Network, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. Vol: 9, No:3, 2015.

Khalilinezhad. M, Dellepiane S. Vernazza. G,  Prediction of Healthy Blood with Data mining Classification by Using Decision Tree, Naive Baysian, and SVM Approaches, 3rd International Conference on Image Vision and Computing ( ICIVC 2014) Paris, France, 2014.

 Khalilinezhad. M, Dellepiane. S, Abedi. F, Vernazza.G, Extracting Hidden Patterns in Blood Donor Database using Associaiton rule Mining, European Data mining conference, Lisbon. Portugal. July 2014.

Dellepiane. G.S, Khalilinezhad, Ferretti. R. M, Tri-phaisc CT Liver Characterization and Color Data Fusion , International Journal of Advance Research in Computer and Communication Engineering. Vol: 4, Augest 2015, ISSN: 2278-1021.

De Martino, M., Dellepiane, S., Gemme, L., Moser, G., Serpico, S. B., Toma, M., … & Pedroncini, A. (2014, July). The SEAGOSS project: Monitoring coastal seawater in Italy by remote sensing data. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International (pp. 4454-4457). IEEE.

Gemme, L., Ferretti, R., & Dellepiane, S. (2015, April). Liver tissue characterization and multitemporal parameter selection in triphasic CT. In In Biomedical Imaging: From Nano to Macro, 2015 IEEE International Symposium on. IEEE.

Gemme, L., Dellepiane, S., & Vernazza, G. (2015, May). Azimuth ambiguity spatial correlation composite (ASCC): A novel method for ghost enhancement in SAR images. In OCEANS 2015-Genova (pp. 1-5). IEEE.

Gemme, L., & Dellepiane, S. (2015, July). A fuzzy graph-based segmentation for marine and maritime applications in SAT images. In Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International. IEEE.

Gemme, L., & Dellepiane, S. (2015). A new graph-based method for automatic segmentation. In Image Analysis and Processing—ICIAP 2015 (pp. 601-611). Springer International Publishing.

Nardotto, S., Ferretti, R., Gemme, L., & Dellepiane, S. (2015, September). Optimizing and Evaluating a Graph-Based Segmentation of MRI Wrist Bones. In New Trends in Image Analysis and Processing–ICIAP 2015 Workshops (pp. 159-166). Springer International Publishing.

Nardotto, S., Gemme, L., & Dellepiane, S. (2015, December). An optimal and automatic graph cut method for biomedical images using compactness measure. In International Conference on Computer Science and Information Technology (ICCSIT)

Nardotto S., D’Angelo G. :”An alternative method to evaluate Threshold Criteria in image segmentation using ROC analysis.” International Journal of Research in Engineering and Science (IJRES) Volume 4- Issue 3, March 2016 e – ISSN No : 2320-9364 p – ISSN No : 2320-9356.

Nardotto Sonia, and Silvana G. Dellepiane. “An Automatic Segmentation Method for MRI Multiparametric Volumes.” International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014 DOI: 10.7763/IJCTE.2014.V6.840

Dellepiane, Silvana G., and Sonia Nardotto. “Fuzzy Image Segmentation: An Automatic Unsupervised Method.” Computational Modeling of Objects Presented in Images. Springer International Publishing, 2014. 65-88.

Dellepiane Silvana G., Valeria Carbone and Sonia Nardotto: “An automatic unsupervised fuzzy method for image segmentation.” In CompIMAGE 2012, Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications”,pp.307-312, Di Giamberardino et al. (eds) 2012 Taylor & Francis Group, London, ISBN 978-0-415-62134-2

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s